Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 209(10): 1883-99, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-22945919

ABSTRACT

Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα-CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.


Subject(s)
Antigens, Differentiation/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Macrophages/immunology , Macrophages/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Adult , Aged , Aged, 80 and over , Animals , CD47 Antigen/metabolism , Female , Graft Survival/immunology , Hematopoiesis/immunology , Humans , Killer Cells, Natural/immunology , Lymphocyte Depletion , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Phagocytosis/immunology , Protein Binding , Transplantation, Heterologous , Young Adult
2.
Mycopathologia ; 173(5-6): 311-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21960040

ABSTRACT

It has been over a decade since Cryptococcus gattii was first recognized as the causative organism of an outbreak of cryptococcosis on Vancouver Island, British Columbia. A number of novel observations have been associated with the study of this emergent pathogen. A novel genotype of C. gattii, VGIIa was described as the major genotype associated with clinical disease. Minor genotypes, VGIIb and VGI, are also responsible for disease in British Columbians, in both human and animal populations. The clinical major genotype VGIIa and minor genotype VGIIb are identical to C. gattii isolated from the environment of Vancouver Island. There is more heterogeneity in VGI, and a clear association with the environment is not apparent. Between 1999 and 2010, there have been 281 cases of C. gattii cryptococcosis. Risk factors for infection are reported to be age greater than 50 years, history of smoking, corticosteroid use, HIV infection, and history of cancer or chronic lung disease. The major C. gattii genotype VGIIa is as virulent in mice as the model Cryptococcus, H99 C. neoformans, although the outbreak strain produces a less protective inflammatory response in C57BL/6 mice. The minor genotype VGIIb is significantly less virulent in mouse models. Cryptococcus gattii is found associated with native trees and soil on Vancouver Island. Transiently positive isolations have been made from air and water. An ecological niche for this organism is associated within a limited biogeoclimatic zone characterized by daily average winter temperatures above freezing.


Subject(s)
Cryptococcosis/epidemiology , Cryptococcosis/microbiology , Cryptococcus gattii/isolation & purification , Disease Outbreaks , Adolescent , Adult , Aged , Aged, 80 and over , Animals , British Columbia/epidemiology , Child , Child, Preschool , Cryptococcosis/immunology , Cryptococcus gattii/classification , Cryptococcus gattii/genetics , Disease Models, Animal , Female , Genotype , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Molecular Epidemiology , Risk Factors , Young Adult
3.
Infect Immun ; 77(10): 4284-94, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19635827

ABSTRACT

The fungal pathogen Cryptococcus neoformans causes approximately one million cases of cryptococcosis per year in people with AIDS. In contrast, the related species C. gattii is responsible for a much smaller number of cases, but these often occur in immunocompetent people. In fact, C. gattii has emerged in the last decade as the frequent cause of cryptococcosis in otherwise healthy people in British Columbia. We analyzed the immune responses elicited by three C. gattii strains and one C. neoformans strain in mice as a first step toward understanding why C. gattii is able to cause disease in immunocompetent hosts. The C. gattii strains all induced a less protective inflammatory response in C57BL/6 mice by inhibiting or failing to provoke the migration of neutrophils to sites of infection. The C. gattii strains also failed to elicit the production of protective cytokines, such as tumor necrosis factor alpha, compared to the ability of the C. neoformans strain. Despite these differences, the strain representing the major outbreak genotype from British Columbia showed a virulence equivalent to that of the C. neoformans strain, while two other C. gattii strains had reduced virulence. Taken together, our results indicate that C. gattii strains thrive in immunocompetent hosts by evading or suppressing the protective immune responses that normally limit the progression of disease caused by C. neoformans.


Subject(s)
Cryptococcosis/epidemiology , Cryptococcus neoformans/immunology , Cryptococcus/immunology , Disease Outbreaks , Inflammation/immunology , Inflammation/pathology , Animals , British Columbia/epidemiology , Cryptococcosis/immunology , Cryptococcosis/pathology , Cryptococcus/isolation & purification , Cryptococcus/pathogenicity , Cryptococcus neoformans/pathogenicity , Cytokines/metabolism , Female , Humans , Inflammation/microbiology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Virulence
4.
Mol Microbiol ; 69(6): 1456-75, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18673460

ABSTRACT

SUMMARY: The pathogenic fungus Cryptococcus neoformans generally initiates infection in mammalian lung tissue and subsequently disseminates to the brain. We performed serial analysis of gene expression (SAGE) on C. neoformans cells recovered from the lungs of mice and found elevated expression of genes for central carbon metabolism including functions for acetyl-CoA production and utilization. Deletion of the highly expressed ACS1 gene encoding acetyl-CoA synthetase revealed a requirement for growth on acetate and for full virulence. Transcripts for transporters (e.g. for monosaccharides, iron, copper and acetate) and for stress-response proteins were also elevated thus indicating a nutrient-limited and hostile host environment. The pattern of regulation was reminiscent of the control of alternative carbon source utilization and stress response by the Snf1 protein kinase in Saccharomyces cerevisiae. A snf1 mutant of C. neoformans showed defects in alternative carbon source utilization, the response to nitrosative stress, melanin production and virulence. However, loss of Snf1 did not influence the expression of a set of genes for carbon metabolism that were elevated upon lung infection. Taken together, the results reveal specific metabolic adaptations of C. neoformans during pulmonary infection and indicate a role for ACS1 and SNF1 in virulence.


Subject(s)
Adaptation, Physiological , Cryptococcosis/microbiology , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/physiology , Gene Expression Regulation, Fungal , Acetic Acid/metabolism , Animals , Carbon/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Female , Gene Deletion , Gene Expression Profiling , Lung/microbiology , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...